Lets’ look at the NYC restaurant inspection data
Boxplot of scores with different violation types in 2017 Manhanttan
Barplot of numbers of each type of violations in 2017 Manhattan
Scatterplot of numbers of 10F violation through year 2012 to year 2017
---
title: "Dashboard"
output:
flexdashboard::flex_dashboard:
orientation: columns
vertical_layout: fill
source_code: embed
---
```{r setup, include=FALSE}
library(flexdashboard)
library(tidyverse)
library(p8105.datasets)
library(plotly)
```
Lets' look at the NYC restaurant inspection data
```{r}
data("rest_inspec")
rest_inspec_2017m =
rest_inspec %>%
filter(boro == "MANHATTAN",
str_detect(inspection_date, "2017")) %>%
drop_na()
```
Column {data-width=650}
-----------------------------------------------------------------------
### Chart A
Boxplot of scores with different violation types in 2017 Manhanttan
```{r}
rest_inspec_2017m %>%
mutate(
violation_code = fct_reorder(violation_code, score)
) %>%
plot_ly(y = ~ score, color = ~ violation_code, type = "box", colors = "viridis")
```
Column {data-width=350}
-----------------------------------------------------------------------
### Chart B
Barplot of numbers of each type of violations in 2017 Manhattan
```{r}
rest_inspec_2017m %>%
count(violation_code) %>%
mutate(
violation_code = fct_reorder(violation_code, n)
) %>%
plot_ly(x = ~violation_code, y = ~n, color = ~violation_code, type = "bar", colors = "viridis")
```
### Chart C
Scatterplot of numbers of 10F violation through year 2012 to year 2017
```{r}
rest_inspec %>%
filter(violation_code == "10F") %>%
mutate(inspection_year = substr(inspection_date, 1,4)) %>%
group_by(inspection_year) %>%
mutate(n = n()) %>%
plot_ly(x = ~inspection_year, y = ~n, color = ~inspection_year,
type = "scatter", mode = "markers")
```